MA 241 Calculus I
Text: "Calculus"
by James Stewart
Instructor : Dr. E. Jacobs
Office : COAS 301-23
Office Hours
MWF 4:00-5:00
Thur 1:00-2:00
e-mail: jacobs50@xecu.net

Section 07
Class meets on Mon, Wed, Fri from 3:00 to 3:50 in COAS 317 Class also meets on Thursday from 3:45 to 5:00 in COAS 303

Grading System

Exam Average
84\%
Homework Average 16%

Grading System

Exam I 21%
Exam II21%
Exam III 21%
Final Exam 21%
Homework 16%

Let T_{1}, T_{2} and T_{3} be the midterm exam scores
Let T_{4} be the score on the final exam
Let H be the homework average

$$
\begin{aligned}
& \text { Overall } \\
& \text { Average }
\end{aligned}=(0.84)\left(\frac{T_{1}+T_{2}+T_{3}+T_{4}}{4}\right)+(0.16) H
$$

Suppose a student scores 90,90 and 20 on the first three exams of the course. The student has a homework average of 50 . Will this student have to repeat the course if he does well on the final exam?

Solution:
Let x be the score on the final exam.
Let y be the overall average in the course

$$
y=(0.84)\left(\frac{90+90+20+x}{4}\right)+(0.16)(50)
$$

This simplifies to:

$$
y=50+(0.21) x
$$

$$
y=50+(0.21) x
$$

Maximum grade if $x=100$

$$
y=50+(0.21)(100)=50+21=71
$$

$$
y=(0.21) x+50
$$

In general, the equation of a line is:

$$
y=m x+b
$$

$$
y=m x+b
$$

b is the y-intercept m is the slope

$$
m=\frac{\Delta y}{\Delta x}
$$

Rules for Exams

1. You may not have formulas or notes with you on exams.
2. Bring your own calculator. Scientific calculators only. No graphing calculators.
3. Make-up exams will only be given for in very special circumstances. Arrangements for a make-up exam must be made within 24 hours of the original exam.

Rule for Homework

1. Homework must be neat. Show work.
2. If homework takes more than one sheet of paper, the pages must be stapled.
3. The work you hand in should be your own.
4. Homework must be handed in on time.

Abstract

Attendance Attendance is not counted in your grade in the course except for borderline cases.

	Some Important Dates
Exam I	Thursday, September 22
Exams II,III	Dates to be announced
Final Exam	Monday, December 12
Assignment 1	Friday, September 2

The homework and exam schedule may be affected by the weather.

Coastal Watches/Warnings and 5-Day Cone

www.xecu.net/jacobs/index241.htm

Calculus

The Mathematics of Change

The two central questions of calculus:
How fast?
How much?

Let V denote the volume in a piston
Let P denote the pressure of the gas inside the piston

The value of P depends on the value of V P is a function of V

$$
P=f(V)
$$

If we change the value of V, we will automatically change the value of P.

How fast is P changing with respect to V ?
If we change V a certain amount ΔV, how much will P change?

Let $x=$ the distance (in meters) a spring is stretched.
Let $E=$ the energy it takes to stretch the spring x meters

$$
E=f(x)
$$

How fast is E changing with respect to x ?
If we change x by a certain amount Δx, how much will E change?

Water is being poured into a conical container.

Let $h=$ the height of the water level
Let $M=$ the mass of water inside this container

$$
M=f(h)
$$

How fast is the mass changing with respect to the water level? If the water level increases by an amount Δh, how much increase in mass will we get?

A ball is dropped from cliff.
Let t be the elapsed time (in seconds) that the ball is falling.
Let s be the distance (in meters) that the ball has fallen after t seconds.

$$
s=s(t)
$$

How fast is the ball falling?
How much does the ball fall after t seconds?
If we wait an additional Δt seconds longer, how much additional distance Δs will the ball fall?

How fast - Differential Calculus
How much - Integral Calculus

A car is traveling north on Route 95 at the speed limit of 70 mph.

The car begins at Mile Marker 50.

Let t denote the time of travel (in hours)
Let y denote the mile marker that the car is up to

$$
\begin{gathered}
\text { Distance }=(\text { Rate })(\text { Time }) \\
\qquad \begin{array}{c}
y-50=70 t \\
y=70 t+50
\end{array}
\end{gathered}
$$

$$
y=70 t+50
$$

Compare to the equation of a straight line:

$$
y=m x+b
$$

$$
\text { velocity }=\frac{\text { Change in distance }}{\text { Change in time }}
$$

$$
\text { Rate of change }=\text { slope }
$$

Let A, B and C be three points on a line.

Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ be the coordinates of these points. By similar triangles,

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y_{3}-y_{2}}{x_{3}-x_{2}}
$$

The ratio of the change in height to the change in base is the slope

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y_{3}-y_{2}}{x_{3}-x_{2}}
$$

Other notation:

$$
m=\frac{\Delta y}{\Delta x}=\frac{\text { rise }}{\text { run }}
$$

If $\left(x_{1}, y_{1}\right)$ is a point on the line and (x, y) is any other point on the line, then

$$
m=\frac{y-y_{1}}{x-x_{1}}
$$

Point-Slope Formula of the Straight Line

Example:
Find the equation of the line that passes through the points $(1,3)$ and $(3,7)$

Find the equation of the line that passes through the points $(1,3)$ and $(3,7)$

$$
\begin{gathered}
m=\frac{\Delta y}{\Delta x}=\frac{7-3}{3-1}=2 \\
\text { Let }\left(x_{1}, y_{1}\right)=(1,3) \\
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=2(x-1) \\
y=2 x+1
\end{gathered}
$$

The equation $y=2 x+1$ is in the form:

$$
y=m x+b
$$

Slope-Intercept Formula
The point $(0, b)$ is the y-intercept

Example:
Find the equation of the line that passes through the points $(0,-3)$ and $(3,3)$

Find the equation of the line that passes through the points $(0,-3)$ and $(3,3)$

$$
\begin{gathered}
m=\frac{\Delta y}{\Delta x}=\frac{3-(-3)}{3-0}=2 \\
b=-3 \\
y=2 x-3
\end{gathered}
$$

Parallel lines have the same slope

Find the equation of the line through the points $(-2,1)$ and $(4,-2)$

Find the equation of the line through the points $(-2,1)$ and $(4,-2)$

$$
\begin{gathered}
m=\frac{\Delta y}{\Delta x}=\frac{-2-1}{4-(-2)}=-\frac{1}{2} \\
y-y_{1}=m\left(x-x_{1}\right) \\
y-1=\left(-\frac{1}{2}\right)(x-(-2)) \\
y-1=-\frac{1}{2} x-1 \\
y=-\frac{1}{2} x=-\frac{x}{2}
\end{gathered}
$$

$y=-\frac{1}{2} x$ is in the form $y=m x+b$ where $m=-\frac{1}{2}$ and $b=0$

Increasing lines have positive slopes.
Decreasing lines have negative slopes.
What does it mean if a line has a slope of 0

