The Exponential Shift Theorem

There is a particularly useful theorem, called the Exponential Shift Theorem that results from the Product Rule that you learned about in first year calculus.

$$
\frac{d}{d x}(f(x) g(x))=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

Let's use the notation D instead of $\frac{d}{d x}$.
Also, take the special case where $g(x)=e^{r x}$ (r is a constant).

$$
D\left(e^{r x} f(x)\right)=r e^{r x} f(x)+e^{r x} f^{\prime}(x)
$$

If we rewrite this relationship using operator notation, we get:

$$
\begin{equation*}
D\left(e^{r x} f(x)\right)=e^{r x}(D+r) f(x) \tag{1}
\end{equation*}
$$

Equation (1) is a special case of the formula that we will call the Exponential Shift Theorem. To generalize equation (1), consider what happens if we replace the operator D with the operator D^{2}.

$$
D^{2}\left(e^{r x} f(x)\right)=D\left(D\left(e^{r x} f(x)\right)=D\left(e^{r x}(D+r) f(x)\right)\right.
$$

The last expression on the right of this equation comes from equation (1). Now, apply equation (1) again with $(D+r) f(x)$ instead of $f(x)$

$$
D^{2}\left(e^{r x} f(x)\right)=e^{r x}(D+r)(D+r) f(x)=e^{r x}(D+r)^{2} f(x)
$$

We can repeat this calculation in the same way with the operator D^{3}

$$
D^{3}\left(e^{r x} f(x)\right)=D\left(D^{2}\left(e^{r x} f(x)\right)\right)=D\left(e^{r x}(D+r)^{2} f(x)\right)=e^{r x}(D+r)^{3} f(x)
$$

More generally,

$$
\begin{equation*}
D^{k}\left(e^{r x} f(x)\right)=e^{r x}(D+r)^{k} f(x) \tag{2}
\end{equation*}
$$

Example 1.

If $y=x^{4} e^{x}$, calculate the third derivative.
Solution:
$D^{3} y=D^{3}\left(x^{4} e^{x}\right)=e^{x}(D+1)^{3} x^{4}=e^{x}\left(D^{3}+3 D^{2}+3 D+1\right)\left(x^{4}\right)=e^{x}\left(24 x+36 x^{2}+12 x^{3}+x^{4}\right)$
We can generalize equation (2) even further by recognizing that any linear differential operator is a combination of terms of the form D^{k}.

Let $P(t)$ be the following polynomial:

$$
P(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots a_{1} t+a_{0}=\sum_{k=0}^{n} a_{k} t^{k}
$$

If we replace each occurence of t in this polynomial with the operator D we obtain a differential operator $P(D)$

$$
P(D)=a_{n} D^{n}+a_{n-1} D^{n-1}+\cdots a_{1} D+a_{0}=\sum_{k=0}^{n} a_{k} D^{k}
$$

Now, apply this operator to an expression of the form $e^{r x} f(x)$

$$
\begin{aligned}
P(D)\left(e^{r x} f(x)\right) & =\sum_{k=0}^{n} a_{k} D^{k}\left(e^{r x} f(x)\right) \\
& =\sum_{k=0}^{n} a_{k} e^{r x}(D+r)^{k} f(x) \quad \text { (This follows from equation (2)) } \\
& =e^{r x} \sum_{k=0}^{n} a_{k}(D+r)^{k} f(x) \\
& =e^{r x} P(D+r) f(x)
\end{aligned}
$$

We have just discovered the following formula:

$$
\begin{equation*}
P(D)\left(e^{r x} f(x)\right)=e^{r x} P(D+r) f(x) \tag{3}
\end{equation*}
$$

Equation (3) is the Exponential Shift Theorem.

Example 2.

Let $y=e^{-x} \sin x$. Calculate the expression $y^{\prime \prime}+y^{\prime}$
Solution:

$$
\begin{aligned}
\left(D^{2}+D\right) y & =\left(D^{2}+D\right)\left(e^{-x} \sin x\right) \\
& =e^{-x}\left((D-1)^{2}+(D-1)\right)(\sin x) \\
& =e^{-x}\left(D^{2}-D\right)(\sin x) \\
& =e^{-x}(-\sin x-\cos x)
\end{aligned}
$$

Example 3.

Let $y=x \cosh x$. Calculate the expression $\frac{d^{4} y}{d x^{4}}-y$
Solution:

$$
\begin{aligned}
\left(D^{4}-1\right) & \left(x \cdot \frac{1}{2}\left(e^{x}+e^{-x}\right)\right)=\frac{1}{2}\left(D^{4}-1\right)\left(x e^{x}\right)+\frac{1}{2}\left(D^{4}-1\right)\left(x e^{-x}\right) \\
& =\frac{1}{2} e^{x}\left((D+1)^{4}-1\right)(x)+\frac{1}{2}\left((D-1)^{4}-1\right)(x) \\
& =\frac{1}{2} e^{x}\left(D^{4}+4 D^{3}+6 D^{2}+4 D\right)(x)+\frac{1}{2} e^{-x}\left(D^{4}-4 D^{3}+6 D^{2}-4 D\right)(x) \\
& =\frac{1}{2} e^{x}(4)+\frac{1}{2} e^{-x}(-4) \\
& =2 e^{x}-2 e^{-x}=4 \sinh x
\end{aligned}
$$

Example 4.

Solve the differential equation:

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0
$$

If we substitute $e^{r x}$ into this equation, we obtain:

$$
\begin{gathered}
r^{2}+2 r+1=0 \\
(r+1)^{2}=0 \\
r=-1
\end{gathered}
$$

Thus, e^{-x} is a solution. However, to find the general solution of this second order equation, we need another solution independent of the first one. There is a clever substitution that, when combined with the Exponential Shift Theorem, produces all the solutions of the differential equation.
Let $u=e^{x} y$. This permits us to substitute $e^{-x} u$ in place of y in the differential equation.

$$
\begin{gathered}
(D+1)^{2} y=0 \\
(D+1)^{2}\left(e^{-x} u\right)=0 \\
e^{-x} D^{2} u=0 \\
D^{2} u=0 \\
D u=C_{1} \\
u=C_{1} x+C_{2} \\
y=e^{-x} u=C_{1} x e^{-x}+C_{2} e^{-x}
\end{gathered}
$$

We have obtained e^{-x}, which we already knew about. However, we have also obtained $x e^{-x}$, which we did not know about at all.

Example 5

Solve the differential equation:

$$
(D-4)^{3} y=0
$$

We can see that $e^{4 x}$ is going to be a solution, but what are the other solutions? Let $u=e^{-4 x} y$ and substitute into the equation.

$$
\begin{gathered}
(D-4)^{3}\left(e^{4 x} u\right)=0 \\
e^{4 x} D^{3} u=0 \\
D^{3} u=0
\end{gathered}
$$

Now, integrate both sides three times to obtain:

$$
u=a+b x+c x^{2}
$$

It follows that the general solution of the differential equation is:

$$
y=e^{4 x} u=a e^{4 x}+b x e^{4 x}+c x^{2} e^{4 x}
$$

