
The Exponential Shift Theorem

There is a particularly useful theorem, called the Exponential Shift Theorem that results
from the Product Rule that you learned about in first year calculus.

d

dx
(f(x)g(x)) = f(x)g′(x) + g(x)f ′(x)

Let’s use the notation D instead of d
dx .

Also, take the special case where g(x) = erx (r is a constant).

D (erxf(x)) = rerxf(x) + erxf ′(x)

If we rewrite this relationship using operator notation, we get:

D (erxf(x)) = erx(D + r)f(x) (1)

Equation (1) is a special case of the formula that we will call the Exponential Shift Theo-
rem. To generalize equation (1), consider what happens if we replace the operator D with
the operator D2.

D2 (erxf(x)) = D(D (erxf(x)) = D (erx(D + r)f(x))

The last expression on the right of this equation comes from equation (1). Now, apply
equation (1) again with (D + r)f(x) instead of f(x)

D2 (erxf(x)) = erx(D + r)(D + r)f(x) = erx(D + r)2f(x)

We can repeat this calculation in the same way with the operator D3

D3 (erxf(x)) = D(D2 (erxf(x))) = D
(
erx(D + r)2f(x)

)
= erx(D + r)3f(x)

More generally,
Dk (erxf(x)) = erx(D + r)kf(x) (2)

Example 1.
If y = x4ex, calculate the third derivative.

Solution:

D3y = D3
(
x4ex

)
= ex(D+1)3x4 = ex(D3+3D2+3D+1)(x4) = ex(24x+36x2+12x3+x4)

We can generalize equation (2) even further by recognizing that any linear differential
operator is a combination of terms of the form Dk.

Let P (t) be the following polynomial:

P (t) = antn + an−1t
n−1 + · · · a1t + a0 =

n∑

k=0

aktk



If we replace each occurence of t in this polynomial with the operator D we obtain a
differential operator P (D)

P (D) = anDn + an−1D
n−1 + · · · a1D + a0 =

n∑

k=0

akDk

Now, apply this operator to an expression of the form erxf(x)

P (D) (erxf(x)) =
n∑

k=0

akDk (erxf(x))

=
n∑

k=0

akerx(D + r)kf(x) (This follows from equation (2))

= erx
n∑

k=0

ak(D + r)kf(x)

= erxP (D + r)f(x)

We have just discovered the following formula:

P (D) (erxf(x)) = erxP (D + r)f(x) (3)

Equation (3) is the Exponential Shift Theorem.

Example 2.
Let y = e−x sin x. Calculate the expression y′′ + y′

Solution:
(D2 + D)y = (D2 + D)

(
e−x sin x

)

= e−x
(
(D − 1)2 + (D − 1)

)
(sin x)

= e−x
(
D2 −D

)
(sinx)

= e−x(− sin x− cos x)

Example 3.
Let y = x cosh x. Calculate the expression d4y

dx4 − y

Solution:

(D4 − 1)
(

x · 1
2

(
ex + e−x

))
=

1
2
(D4 − 1)(xex) +

1
2
(D4 − 1)(xe−x)

=
1
2
ex((D + 1)4 − 1)(x) +

1
2
((D − 1)4 − 1)(x)

=
1
2
ex(D4 + 4D3 + 6D2 + 4D)(x) +

1
2
e−x(D4 − 4D3 + 6D2 − 4D)(x)

=
1
2
ex(4) +

1
2
e−x(−4)

= 2ex − 2e−x = 4 sinhx



Example 4.
Solve the differential equation:

d2y

dx2
+ 2

dy

dx
+ y = 0

If we substitute erx into this equation, we obtain:

r2 + 2r + 1 = 0

(r + 1)2 = 0

r = −1

Thus, e−x is a solution. However, to find the general solution of this second order equation,
we need another solution independent of the first one. There is a clever substitution that,
when combined with the Exponential Shift Theorem, produces all the solutions of the
differential equation.

Let u = exy. This permits us to substitute e−xu in place of y in the differential equation.

(D + 1)2y = 0

(D + 1)2
(
e−xu

)
= 0

e−xD2u = 0

D2u = 0

Du = C1

u = C1x + C2

y = e−xu = C1xe−x + C2e
−x

We have obtained e−x, which we already knew about. However, we have also obtained
xe−x, which we did not know about at all.

Example 5
Solve the differential equation:

(D − 4)3y = 0

We can see that e4x is going to be a solution, but what are the other solutions? Let
u = e−4xy and substitute into the equation.

(D − 4)3
(
e4xu

)
= 0

e4xD3u = 0

D3u = 0

Now, integrate both sides three times to obtain:

u = a + bx + cx2

It follows that the general solution of the differential equation is:

y = e4xu = ae4x + bxe4x + cx2e4x


